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Abstract. We study the motion of envelope solitons on anharmonic atomic chains in the presence of
dissipation and thermal fluctuations. We consider the continuum limit of the discrete system and apply
an adiabatic perturbation theory which yields a system of stochastic integro-differential equations for the
collective variables of the ansatz for the perturbed envelope soliton. We derive the Fokker-Planck equation
of this system and search for a statistically equivalent system of Langevin equations, which shares the
same Fokker-Planck equation. We undertake an analytical analysis of the Langevin system and derive
an expression for the variance of the soliton position V ar[xs] which predicts a stronger than linear time
dependence of V ar[xs] (superdiffusion). We compare these results with simulations for the discrete system
and find they agree well. We refer to recent studies where the diffusion of pulse solitons were found to
exhibit a superdiffusive behaviour on longer time scales.

PACS. 05.10.Gg Stochastic analysis methods – 05.45.Yv Solitons – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion – 05.50.+q Lattice theory and statistics

1 Introduction

Anharmonic one-dimensional lattices play an important
role in physics. Since the first computer based numerical
investigations physicists have known that coherent exci-
tations propagate in such systems with constant velocity
and shape. Zabusky and Kruskal showed in computer ex-
periments that these excitations were robust in scattering
among themselves, thus they coined them “solitons” [1].
Numerical simulations of chains at finite temperature with
realistic interaction models such as the Lennard-Jones
potential showed that these compressive and supersonic
pulses propagate over long distances [2]. The soliton con-
cept is thus useful in explaining essential features of molec-
ular chains, such as the energy transport in α-helical pro-
teins [2–5]. Nonlinear lattice dynamics may be applied to
model the energy transport in DNA molecules [6] as well
as the denaturation and conformational transitions in the
DNA [7,8]. Unfortunately no exact soliton solutions exist
for the continuum approximation (CA) of atomic chains
with realistic interaction potentials like the Lennard-Jones
or Morse potential. Therefore, analytical studies of nonlin-
ear lattice dynamics are primarily based on chains possess-
ing cubic and/or quartic anharmonicity. In this case the
CA yields Boussinesq (Bq) or Korteweg-de Vries (KdV)
type equations. If one assumes soliton solutions with an
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internal oscillation, the CA yields a Nonlinear Schrödinger
equation (NLS) for the envelope of the soliton [9].

Though these facts have been known for quite some
time there exist few publications on soliton dynamics in
perturbed lattice models. In the case of biomolecules, espe-
cially damping and thermal fluctuations appear as natu-
ral perturbations. Recently Arévalo et al. investigated the
dynamics of pulse solitons on an atomic chain with cubic
anharmonicity in the presence of damping and noise [10].
The damping and noise terms satisfy the fluctuation-
dissipation theorem where the noise is assumed to be
Gaussian white noise. The analytical results are compared
with the results of Langevin dynamics simulations of the
chain. The position and the inverse width of the soliton so-
lution were found to be good collective variables (CV) for
the perturbed soliton. The correlation between the shape
and the velocity of the pulse solitons leads to an anomalous
variance of the soliton position V ar[xs]. For longer time
intervals, V ar[xs] of the pulse solitons grows stronger than
linearly in time (superdiffusion). This effect was also ob-
served in the case of pulse solitons in classical Heisenberg
chains [11].

Here, we investigate the diffusion of envelope solitons,
the second class of non-topological solitons, in order to
determine whether superdiffusion is a generic behaviour
for these excitations.

In this article, we present the effects of damping and
thermal fluctuations on the propagation of the envelope
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solitons. We proceed similarly as above and describe the
perturbed envelope of the soliton by the bright soliton
solution and derive Langevin equations for the 2 CV.

2 Model

We consider an anharmonic chain of particles with
mass m (m = 1) and with an interatomic spacing a
(a = 1). We denote yn as the longitudinal displace-
ment of the nth particle from its equilibrium position and
φn = yn+1 − yn as its relative displacement or strain. The
nearest neighbours interact via an interaction potential
with a harmonic and a quartic term

Vn = V (φn) =
α

2
φ2

n +
γ

4
φ4

n. (1)

For the more general case of cubic and quartic terms, the
calculations are similar yet require a greater technical ef-
fort. In this case the range of validity for the theory would
also be smaller since one must then consider higher har-
monic terms in (8).

We want to allow dissipation in our system and choose
Stokes damping for every particle n

FSt
n = −νStẏn. (2)

The Stokes damping corresponds to the situation of a
chain in a viscous liquid. In contrast to the hydrodynam-
ical damping, which is an inner mechanism of the sys-
tem, the Stokes damping does not change the dispersion
relation of plane waves ωh(k) with sufficiently large wave
numbers k. This fact is important for the derivation of the
NLS in the next section. The noise term, for this damping,
which fulfils the fluctuation-dissipation theorem takes the
simple form

FN
n (t) =

√
Dξn(t), (3)

where
D = 2νStkBT (4)

is the diffusion constant, kB is the Boltzmann constant
and T is the temperature of the thermal bath. We as-
sume ξn(t) to be delta-correlated white noise

〈
ξn(t)ξm(s)

〉
= δnmδ(t− s) (5)

〈
ξn(t)

〉
= 0. (6)

It is easy to show that this system obeys the following
equations of motion

ÿn = V ′
n − V ′

n−1 − νStẏn +
√
Dξn(t). (7)

3 Continuum approximation

Since the discrete equations of motion can not be solved
analytically, we go on with a continuum approximation
where we assume that the envelope width is much larger
than the lattice constant. It has long since been docu-
mented that the envelope of small-amplitude excitations

with an internal mode on anharmonic chains are NLS so-
lutions [9]. It is suggesting to study the dynamics of the
perturbed soliton by a collective coordinate approach for
the envelope similar to the bright soliton solution of the
NLS. One derives the NLS equation in absolute displace-
ment coordinates if one looks for solutions

yn =
∑

l

εl
∑

m

Fl,me
imθ + c.c. (8)

with the phase θ = kn−ωt and only assuming the contin-
uum limit for the envelope functions Fl,m. This approach
is known as the reductive perturbation method and was
first applied to the anharmonic chain by Tsurui [12]. For
the quartic potential, only the terms for l = 1 and m = 1
contribute. Thus, the following ansatz suffices

yn(t) = Fn(t)eiθ + F̃n(t)e−iθ , Fn ∼ ε. (9)

The reductive perturbation technique is accompanied by
the multiple scale method. After substituting (9) in the
equation of motion and assuming the continuum limit for
the envelope function (Fn(t) → F (x, t))

Fn±1 = F ± ∂xF + ∂2
xF + ..., (10)

one introduces the new variables xi = εix, ti = εit and
analyses the equations in the different orders of ε. In the
first order O(ε3), where nonlinear terms and the damping
(νSt ∼ ε2) begin to contribute, one obtains an NLS in the
new coordinates τ = −ωh

4 t and z = (x − xo) − vt with a
damping term iΓF

i∂τF +
1
2
∂2

zF + κ | F |2 F + iΓF = 0, (11)

where ω = ωh = 2
√
α | sin(k

2 ) |, κ = 6 γω2
h

α2 and Γ = − 2νSt

ωh
.

The evolution equation of the conjugated complex (c.c.)
envelope F̃ is the c.c. of the NLS (11). In order to include
the noise term in this scheme, it is useful to use a similar
ansatz for the noise

ξn(t) =
1
2

[
Ξn(t)eiθ + Ξ̃n(t)e−iθ

]
, (12)

where Ξn(t) = ξa
n(t) + iξb

n(t). If ξa
n(t) and ξb

n(t) are
white noises, delta-correlated in space and time, the con-
ditions (5) and (6) for ξn(t) are still valid. The new noise
term Ξ(x, t) will appear in the NLS if we assume the tem-
perature to be in the order kBT ∼ ε4 (

√
D ∼ ε3)

i∂τF +
1
2
∂2

zF + κ | F |2 F = iR , (13)

with R = −ΓF − i
√

D
ω2

h
[ξa(x, t)+ iξb(x, t)]. The bright soli-

ton solution of the NLS (R = 0) is

F (τ, z) =
ηo√
κ

sech[ηo(z + ζoτ)]e−iζoz+i(
η2

o
2 − ζ2

o
2 )τ , (14)
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which corresponds to the envelope soliton (9)

y(z, t) =
4
√
c2o − 1√
κ

sech
[
2
√
c2o − 1z

]

× cos(kx− coωht), (15)

where we substituted the parameter ηo with the normal-

ized velocity co =
√

η2
o

4 + 1. ζo is initially chosen as zero
because it only takes the role of an additional velocity
relative to the z-coordinate. The normalized velocity co
is restricted to values nearly equal to one since we as-
sumed ηo to be in O(ε). The second free parameter of
the envelope soliton is the wavenumber k of the internal
mode. It should not be too small because the multiple
scale scheme is only a good approximation if the enve-
lope functions vary distinctly slower on the chain than
the internal oscillation. In relative coordinates the enve-
lope soliton solution φ(x, t) = Geiθ + G̃e−iθ differs from
the solution (15) in absolute coordinates due to a differ-
ent nonlinearity κ = κr = 6γ

α . That is why the equiva-
lent procedure in relative coordinates also yields a NLS
similar to (13) for the envelope function G(x, t). In the
following section we will discuss the perturbative effects
on the soliton which are caused by both the damping and
the noise term. For envelope solitons it is convenient to
choose Stokes damping which is not possible in the case
of pulse solitons since the long-wavelength region (k ∼ 0)
becomes overdamped [13]. Aside from the fact that the
Stokes damping yields a very simple noise term, there are
two even more important reasons to prefer Stokes damp-
ing. The first reason is because the hydrodynamical damp-
ing depends on the relative motions of the particles

Fhy
n = νhy(ẏn+1 − 2ẏn + ẏn−1), (16)

which yields a k-dependent damping term in the NLS (11)
(νSt → 2νhy[1− cos(k)]). As a consequence of the CA, we
are restricted to larger values of k which cause larger effec-
tive damping rates. This effect is obstructive since our goal
is to investigate the soliton diffusion. The second reason
why Stokes damping is preferred is because the hydrody-
namical damping term is mathematically more complex
yielding higher order terms O(εj) with j > 3 in the CA
which limits the validity range of the theory.

4 Adiabatic perturbation theory

Now we investigate the effect of damping and noise in the
perturbed NLS (13) with an adiabatic perturbation the-
ory. Similar problems appear e.g. in the field of nonlinear
optics where the NLS describes the propagation of a laser
beam in an optical fiber. Phenomena such as a fluctuating
nonlinear dielectric permittivity, a deviating fiber radius,
stationary inhomogeneous media or a random initial shape
of the pulse may also be described by different stochastic
terms in the perturbation term R. In contrast to (13), the
random perturbations in nonlinear optics appear most of-
ten as multiplicative noise terms [14,15]. The adiabatic

perturbation theory presumes that the perturbation term
R in (13) is sufficiently small and the envelope of the soli-
ton can be approximated by the bright soliton solution of
the NLS. This approach is not the optimal choice if one is
interested in the noise-induced effects on the amplitude or
the width of the soliton. In the case of a damped soliton
the dynamics of the amplitude and the inverse width are
decoupled and can no longer be modeled by a single collec-
tive coordinate like in (15). The adiabatic approach only
yields good results for small time frames which was proven
by numerical solutions and analytical investigations of the
damped NLS (11). In this case we are mainly interested
in the diffusive behaviour of the soliton and we attempt
to investigate this fastidious problem with an simple ap-
proach. The parameters of the soliton in the adiabatic per-
turbation scheme, namely amplitude and velocity, are no
longer constants. They are assumed to be time-dependent
due the perturbation terms in (13)

F (τ, z) =
η(τ)√
κ

sech[η(τ)(z − zo(τ))]e−iζ(τ)z+iσ(τ), (17)

where zo(t) and σ(t) are expressions which depend on η(t)
and ζ(t)

dzo

dτ
= −ζ(τ) (18)

dσ

dτ
=

1
2

(
η(τ)2 − ζ(τ)2

)
. (19)

In order to determine the time dependence of the col-
lective variables η(t) and ζ(t) one can use the conserved
quantities of the NLS. For R = 0 the norm M and the
momentum P are conserved for the NLS field F

M =
∫ ∞

−∞
| F |2 dz =

2ηo

κ
(20)

and

P =
∫ ∞

−∞

[
F̃zF − F̃Fz

]
dz = −2ηoζo

κ
. (21)

For R �= 0 the norm and momentum of the envelope de-
pend on time

∂M
∂τ

=
∫ ∞

−∞

[
FR̃+ F̃R

]
dz (22)

∂P
∂τ

=
∫ ∞

−∞

[
F̃zR− FzR̃

]
dz. (23)

Comparing (20) with (22) and (21) with (23) one can im-
mediately specify the equations for the time dependence
for the collective variables η(t) and ζ(t)

dη

dτ
=
κ

2

∫ ∞

−∞
[FR̃+RF̃ ]dz (24)

dζ

dτ
= − iκ

2η

∫ ∞

∞
[F̃zR− FzR̃]dz − ζ

η

dη

dτ
. (25)
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Inserting (13) and (17) in (24) and (25), one shows that
the CV fulfil the following system of stochastic integro-
differential equations:






η̇

ζ̇
σ̇
żo




 =






−2Γη
0

1
2 (η2 − ζ2)

−ζ






+
∫ ∞

−∞
dz






B11 B12 0 0
B21 B22 0 0
0 0 0 0
0 0 0 0











ξ1

ξ2

ξ3

ξ4




 (26)

where a dot denotes the derivative with respect to τ . The
noise vector ξ consists of white noise components

〈
ξi(t)ξj(s)

〉
= δijδ(t− s), (27)

where ξ1 and ξ2 adopt the role of ξa and ξb in (13). The
diffusion terms read

B11 = −∆η√κsech[ψ] sin(Ψ) (28)

B12 = −∆η√κsech[ψ] cos(Ψ) (29)

B21 = ∆η
√
κsech[ψ]tanh[ψ] cos(Ψ) (30)

B22 = ∆η
√
κsech[ψ]tanh[ψ] sin(Ψ), (31)

with

∆ =
√
D

ω2
h

, ψ = η(z − zo) , Ψ = −ζz + σ. (32)

We have used the conserved quantities norm M and mo-
mentum P of the envelope F (z, t) to derive the evolu-
tion equations for the collective variables in the presence
of the perturbation R. There also exist more pretentious
perturbation methods which are based on the inverse scat-
tering technique (IST) for the NLS [15], but the quality
of the theory is mainly determined by the choice of the
adiabatic ansatz (17) and not by the perturbation tech-
nique. More importantly, the employed perturbation the-
ory yields simple stochastic equations where only the col-
lective variables η and ζ depend on the noise, which will
be helpful in the calculations of the next section.

5 Langevin system

5.1 Derivation of the Langevin system

As the equations (26) can not be solved analytically, we
try to find a mathematically less complicated but statis-
tically equivalent system of stochastic equations for the
CV. We derive the Fokker-Planck equation belonging to
the system (26) and search for a system of Langevin equa-
tions which has the same Fokker-Planck equation. In this
case the Langevin system and the system (26) are sta-
tistically equivalent. If we express the system (26) in the
following compact nomenclature

dxi

dτ
= Ai[x] +

∫ ∞

−∞
dzBij [z,x]ξj(z, τ), (33)

the associated Fokker-Planck equation in Stratonovich in-
terpretation reads

∂τρ = −
4∑

i

∂xi

[
ρAi

]

+
1
2

4∑

ijkm

∫ ∞

−∞
dz∂xi

[
Bij∂xm

(
ρBmk

)]
. (34)

During the calculation of the Fokker-Planck equation we
benefit from the fact that ζ(t) is restricted to small val-
ues such as

√
D ∼ ε3 since ζ(t) lacks a drift term in (26)

and starts at ζ(0) = 0. Therefore we neglect the term ζz
in the trigonometric functions in (28−31) because σ(t) is
the dominating term. After calculating (34) one must de-
rive formally the Fokker-Planck equation in Stratonovich
interpretation for the Langevin system

dxi

dτ
= ai(x, τ) + bij(x, τ)ξ̄j(τ) (35)

〈
ξ̄i(t)ξ̄j(s)

〉
= δ(t− s)δij (36)

and determine the coefficients which result in the Fokker-
Planck equation (34). The result of this procedure reads

d

dt






η
ζ
σ
zo




 =






−νStη
0

−ωh

8 (η2 − ζ2)
ωh

4 ζ






+






b11 0 0 0
0 b22 0 0
0 0 0 0
0 0 0 0












ξ̄1

ξ̄2

ξ̄3

ξ̄4





 , (37)

where

b11 = −
√

3Dγ
2α

√
η(sin(σ) + cos(σ)) (38)

b22 = −
√
Dγ

2α
√
η(cos (σ) + sin(σ)). (39)

At this point, we can compare our result with the
Langevin set in [10] for the pulse solitons where we keep
in mind that the situation is not identical because hy-
drodynamical damping was used in [10]. There are two
important differences for the two soliton types. The am-
plitude of the pulse solitons decreases slower in time than
for envelope solitons because of the damping. This fact is
one reason why the observation of the soliton was possible
for much longer times (t � 1

νSt
) in [10]. The diffusion of

the pulse solitons is also stronger for small-amplitude soli-
tons while the opposite is valid for envelope solitons due
to the

√
η-term in b22. If we substitute the ansatz for the

envelope (17) in (9), the perturbed envelope soliton takes
the form

y(z, t) = Feiθ + F̃ e−iθ

= 2
η(t)√
κ

sech
[
η(t)(z − zo)

]

× cos
(
kx− ζz − ωht+ σ

)
. (40)
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The two parameters ζ(t) and zo(t) with ζ(0) = zo(0) = 0
are only nonzero if we consider a noisy chain because b22
is nonzero in this case. The component ζz provides only
small values with mean zero within the spatial extension
of the envelope. The phase σ(t) is a function of time be-
cause it is dependent both on η(t) and on ζ(t) for T > 0,
multiplied by ωh. This phase σ(t) and the expression ωht
result in a new time-dependent dispersion relation and
therefore in a time-dependent velocity v(t) of the wave
packet. This relation is essential in order to calculate the
velocity of the damped soliton where σ(t) only depends
on η(t). We are interested in the diffusion of the soliton,
thus zo(t) is the important quantity because it presents the
spatial dislocations of the envelope due to the noise in the
system. The damping also changes the soliton position via
the variable σ(t) but this mechanism is quasi-deterministic
because σ(t) only performs small fluctuations. Therefore
the dislocation zo(t) essentially determines the soliton dif-
fusion. The two parameters η(t) and σ(t) are dominated
by the deterministic part of (37). We use this fact to de-
rive an approximate analytical expression for V ar[zo] in
the next section. This analytical result is tested by the re-
sult for V ar[zo] from the numerical solution of the set (37)
where we have used 1000 runs with different random num-
bers. The analytical result for V ar[zo] shows the correct
dependence on the external parameters νSt, T , co and the
scaled time t̄ = νStt.

5.2 Analytical approach

The drift term of η(t) in (37) is responsible for the expo-
nential decay of η(t) which starts at t = 0 with ηo ∼ ε.
The fluctuations of η(t) are usually less than five percent
after typical times t̄ = νStt ≈ 2. Therefore η(t) and σ(t)
(which primarily depends on η(t)) can be replaced by the
expressions of the damped system without noise

η(t) = ηoe
−νStt (41)

σ(t) = − (c2o − 1)wh

4ν

(
1 − exp(−2νStt)

)
. (42)

This approximation means we have neglected the influence
of the noise term ξ̄1 in our system. The remaining part of
system (37) is

d

dt

(
ζ
zo

)
=

(
0

ωh

4 ζ

)

+
(−C1e

− ν
2 t(cos(σ) + sin(σ)) 0

0 0

) (
ξ̄1
ξ̄2

)
,

(43)

where

C2
1 =

Dγ
√
c2o − 1

2α2
=
νStTγ

√
c2o − 1

α2
. (44)

This system can be written as (x1 = ζ, x2 = zo)

dxi

dt
= −Aij(t)xj +Bij(t)ξ̄j(t). (45)

We find an analytic expressions for the quantities
V ar[zo] = 〈x2

2〉 and V ar[ζ] = 〈x2
1〉 using the relation

d

dt

〈
xixj

〉
= −Ail

〈
xlxj

〉
−

〈
xixl

〉
(AT )lj + Dij (46)

[16] with

A =
(

0 0
−wh

4 0

)
(47)

B =
(
−C1e

− νSt
2 tf [σ(t)] 0
0 0

)
(48)

D = BBT =
(
C2

1e
−νSttf [σ(t)]2 0

0 0

)
(49)

f [σ(t)] = cos[σ(t)] + sin[σ(t)]. (50)

For V ar[zo], the result reads

V ar[zo] =
C2

2

∫ t

0

e−νt′f [σ(t)]2(t− t′)2dt′

≈ C2

∫ t

0

e−νt′(t− t′)2dt′

= K

(
1 − exp(−t̄) − t̄+

t̄2

2

)
(51)

with

C2 =
ω2

h

8
C2

1 (52)

K =
C2

ν3
St

=
ω2

h

√
c2o − 1γkBT

8α2ν2
St

. (53)

Already for small times t̄ (t 	 ν−1
St ) the diffusion is

anomalous

V ar[zo] ∼= K

(
t̄3

3!
− t̄4

4!
+ ...

)
. (54)

The result is surprising since the pulse solitons show a nor-
mal diffusion behaviour for small times [10]. The superdif-
fusive term in the position variance of pulse solitons (∼ t2)
is negligibly small until several time units t̄ have passed.
The anomalous behaviour appears sooner the higher the
velocity of the initial pulse is chosen. Our theory for the
perturbed envelope soliton also predicts a dominance of
the quadratic term for large times t̄ (t � ν−1

St )

V ar[zo] ∼= K
t̄2

2
, (55)

although in the simulations, it was not possible to investi-
gate the diffusion of the envelope solitons for similar large
times as it was done for the pulse solitons.

We compare the result (51) for V ar[zo] with the sim-
ulations of an envelope soliton on a noisy and damped
chain, namely the quantity V ar[xs]. We must check if the
simulations show the predicted proportionalities

V ar[xs] ∼
√
c2o − 1
ν2

St

T (56)

and the time dependence of V ar[zo].
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Fig. 1. Envelope soliton (k = 4π
5

, co = 1.01) on a damped (νSt = 0.001) and noisy chain (T = 5 × 10−5).

Before we compare the theoretical result V ar[zo] with
the values V ar[xs] from the simulations, we should reca-
pitulate the numerical methods we applied.

6 Simulations

The discrete equations of motion for the anharmonic chain
with N particles in relative coordinates read

φ̈n = α[φn+1 − 2φn + φn−1] + γ[φ3
n+1 − 2φ3

n + φ3
n−1]

− νStφ̇n +
√
D(ξn+1(t) − ξn(t)), (57)

where we always choose α = γ = 1 in the simulations. We
use periodic boundary conditions in order to be able to
run long simulation times

dlφ0

dtl
=
dlφN−1

dtl
,
dlφN

dtl
=
dlφ1

dtl
, l = 0, 1

ξ0(t) = ξN−1(t), ξN (t) = ξ1(t). (58)

The simulations are performed on a chain with at least
1000 lattice points. The time integration is carried out by
using the Heun method [17] which has been successfully
used in the numerical solution of partial differential equa-
tions and difference-differential equations, coupled to ei-
ther an additive or a multiplicative noise term [11,18–20].
At t = 0 the chain is initialized by a discrete version of
the envelope soliton (15). In Figure 1 one can see the ini-
tial condition at t = 0 and a snapshot of the chain at a
later time t comparable with t̄ = 1. The envelope soliton
decreases due to the damping. The particles on the chain
show appreciable fluctuations from their positions due to
the temperature although we chose very small values for
νSt and T . We detect the position of the envelope soli-
ton xs for 50 realizations and calculate the variance of the
soliton position V ar[xs]. We use relative coordinates be-
cause in this representation the amplitude of the envelope
soliton vanishes at infinity. In order to detect the center
of the soliton we search for the center of the norm M of
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Fig. 2. The scaled (c = 2.3) solution V ar[zo] agrees with the result V ar[xs] of the simulation (co = 1.01, νSt = 0.001,
T = 5 × 10−5).

the envelope soliton. The norm M is a conserved quantity
for the unperturbed soliton because it is twice the norm
M of the envelope in the continuum limit

M =
∫ ∞

−∞
φ(x, t)2dx

(9)≈ 2
∫ ∞

−∞
| G(x, t) |2 dx (59)

= 4

√
c2o − 1
κr

= Mo.

In the simulations we identify M with a discrete sum over
the core of the envelope, although the discreteness effects
are negligible for low energy solitons (co−1 small). We de-
fine the soliton position xs(t) as the center of the norm M

xs(t) =

∑n2
i=n1

iφ2
i∑n2

i=n1
φ2

i

, (60)

where the integers n1 and n2 mark the core of the en-
velope and depend on the position of the soliton and
its width at the last time step. For the damped system,
the norm of the envelope soliton Mo decays exponentially
(∼ e−2Γτ = e−νStt). After several units of t̄ the ampli-
tude of the envelope soliton (in relative coordinates) be-
comes comparably small with the thermal fluctuations of
the particles and the position routine then fails. This fail-
ure is the reason why we are not able to investigate the
diffusive behaviour of the envelope soliton for similar long
times t � 1

νSt
as it was done for pulse solitons in [10].

Larger values of ηo would be helpful yet we are restricted
to small values O(ε) due to the CA. The physical picture,
which explains the strong influence of the damping on the
envelope soliton, is the rapid motion of the particles in
the profile of the envelope due to the internal mode. In
comparison, the particles in the profile of a pulse soliton
move much slower and therefore dissipate less energy.

7 Discussion

We compare the results from the simulations with the ana-
lytical expression (51) in the following figures. We present
the soliton diffusion V ar[xs] for two envelope solitons
differentiated by their velocities co = 1.01 (Fig. 3) and
co = 1.03 (Fig. 4) with varying damping νSt and temper-
ature T . The solid line in Figures 3 and 4 presents the
analytical result V ar[zo] for the position variance V ar[xs]
according to (51). We only present the results for times
t̄ ≤ 2 since for small velocities co the damped envelope
solitons become strongly masked by noise and the position
routine begins to fail for t̄ > 2. The values of the simula-
tion results are always larger than the theoretical predic-
tion V ar[zo], where the difference depends on the choice of
the parameters νSt, T and the normalized velocity co. This
fact is expected since we only considered the influence of
the noise on the soliton. The contribution of the phonons
to the diffusion of the envelope soliton is not taken into
account in our calculations. One knows from different sys-
tems that the soliton-phonon scattering also contributes
to the soliton diffusion. It was recently shown by sim-
ulations of anharmonic atomic chains that the phonon
bath yields a significant contribution (linear in time) to
the diffusion of pulse solitons with velocities close to the
sound velocity [10]. The soliton shift caused by the scat-
tering was analytically calculated only in the integrable
Toda lattice [21]. The result allows the determination of
the phonon contribution to the diffusion of the pulse soli-
tons and it can be shown that the phonons cause an addi-
tional normal diffusion term which depends quadratically
on the temperature of the phonon bath [22]. Although
we could not consider this additional effect in the case
of the envelope solitons, the time dependence of V ar[zo]
and V ar[xs] is always very similar. If one scales V ar[zo]
for a certain parameter set (co, νSt, T ) with a constant
factor c > 1, one always obtains a good agreement with
the theory (Fig. 2). This agreement seems to be typical
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Fig. 3. V ar[xs] for an envelope soliton with co = 1.01: simulation vs. result (49). (ν1 = 0.0005, ν2 = 0.001, T1 = 5 × 10−6,
T2 = 5 × 10−5).

for the diffusion of nonlinear excitations since such differ-
ences also occur with the pulse solitons on the anharmonic
chain or with vortices in the 2D Heisenberg model [10,18].
The predicted linear dependence of K in (54) on tempera-
ture T reflects the simulation results precisely. If the tem-
perature T1 = 5 × 10−6 in Figures 3 and 4 is replaced
by T2 = 5 × 10−5, then the values of V ar[xs] increase
by a factor of 10. The proportionality V ar[zo] ∼ 1

ν2 is
also confirmed by the simulation results for small values
of the normalized velocity (co < 1.03). The co-dependence
of V ar[zo] concurs only qualitatively with the simulations.
According to the factor

√
c2o − 1, the values for the soliton

diffusion in (a), (b), (c) and (d) in Figure 4 for the soliton
with co = 1.03 should be approximately 1.74 times larger
than the values in Figure 3 for the soliton with co = 1.01.
Yet the observed values for the diffusion grow slower than
the factor

√
c2o − 1 = ηo

2 indicates, which represents the
amplitude or the inverse width of the initial soliton. Such
differences can be expected, since it is known that the adi-
abatic approach bears certain problems especially when

one predicts the shape of a perturbed envelope soliton
for large times. The perturbation normally destroys the
coupling between amplitude and inverse width of the un-
perturbed soliton. It is also of note that the underlying
perturbation theory is based both on an NLS-type equa-
tion and on the bright soliton solution which are only good
approximations for small co and small perturbations.

Nevertheless, the adiabatic perturbation theory is ca-
pable of explaining the most important results of the sim-
ulations. The envelope solitons exhibit a superdiffusive be-
haviour like pulse solitons yet they show a very different
time dependence, especially concerning small times. The
expression (51) explains why the short-time behaviour is
dominated by anomalous diffusion terms and how the
position variance grows with increasing velocities co. In
the case of pulse solitons V ar[xs] decreases with increas-
ing co since in this case the linear diffusion term decreases.
The superdiffusive quadratic term begins to dominate
after longer times. Our simulations and theory prove that
the perturbed envelope and pulse solitons behave very
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Fig. 4. V ar[xs] for an envelope soliton with co = 1.03: simulation vs. result (49). (ν1 = 0.0005, ν2 = 0.001, T1 = 5 × 10−6,
T2 = 5 × 10−5).

differently although they are both non-topological soli-
tons in contrast to topological solitons which do not show
superdiffusion.

The pulse solitons show a normal diffusion for small
times due to the noisy dynamics of the soliton center. The
anomalous diffusion, which stems from the fluctuations of
the soliton width, becomes dominat for larger times. We
have shown that the envelope solitons reveal a different
diffusion mechanism. The damping causes a rapidly grow-
ing width of the envelope. The envelope solitons appear
much more like non-rigid objects than the pulse solitons.
This effect leads to the anomalous diffusion of the envelope
solitons for all times.

We want to thank Edward Arévalo (MPI PKS Dresden) for
various discussions concerning the simulations of the discrete
chain and Chris Tarn (University Bayreuth) for the critical
reading of this manuscript.
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